Whole Class Discussions: Four Corners Variation - Opposite Sides MATHEMATICS

What teachers do

Before

- Create a true/false statement or question for students to ponder. Choose a statement that requires critical thinking.
- Assign one side of the room as the "Agree" side, and the opposite side of the room as the "Disagree" side.
- Give students a minute or two of quiet time to individually think about the question and take a stance.
- A minute or two should be ample time; ensure that this time is spent quietly so that students make their own choices.

During

- Ask students to move to the side of the room that represents their stance on the question.
- Have some students to justify their choice of sides to the whole class.
- Allow students to change sides after another student's explanation. However, when a student chooses to change sides, ask the student to give reasons for the change.
- Be prepared to contribute to the "debate" by asking "what if .." questions.

After

- Debrief the activity by leading a discussion to summarize the justifications and clarify concepts in order to dispel misconceptions.

What students do

- Carefully ponder the statement, making a personal decision as to the position they will take.
- Respect other students' quiet thinking time.
- Move to the side of the room that describes their stance on the statement.
- Actively listen to students' justifications.
- Be prepared to justify your own choice.
- If sufficiently swayed by a justification from the other side, be prepared to justify your move to that side of the room.
- Participate in summarizing the justifications.

THINK LITERACY: Cross-Curricular Approaches, Grades 7-12

Whole Class Discussions: Opposite Sides

"Agree" Side

"Disagree" Side

	Sample Statements	Grade		
		7	8	9
1.	All squares are rectangles.	\checkmark	\checkmark	\checkmark
2.	Data can be displayed in any kind of graph you choose.	\checkmark	\checkmark	\checkmark
3.	The product of two numbers is always greater than either of the two numbers.	\checkmark	\checkmark	\checkmark
4.	All structures built with 27 interlocking cubes will have the same volume and the same surface area.	\checkmark	\checkmark	\checkmark
5.	When two different fractions each have a numerator that is one less than the denominator, then the fraction with the larger denominator is bigger.	\checkmark	\checkmark	
6.	1 is the same as 100%.	\checkmark	\checkmark	
7.	Two negatives make a positive.		\checkmark	\checkmark
8.	The largest area that can be enclosed by a rope of any length is a square.	\checkmark	\checkmark	\checkmark
9.	The distance around a can of 3 tennis balls is less than the height of the can.		\checkmark	\checkmark
10.	The only way you can tell if a relationship is linear is to graph it.			\checkmark

