Unit 2

Lesson Outline

Day	Lesson Title	Math Learning Goals	Expectations
1	Key characteristics of instantaneous rates of change(Sample Lesson – TIPS4RM)	 determine intervals in order to identify increasing, decreasing, and zero rates of change using graphical and numerical representations of polynomial functions Describe the behaviour of the instantaneous rate of change at and between local maxima and minima 	A2.1
2	Patterns in the Derivative of Polynomial Functions (Sample Lesson – TIPS4RM)	 Use numerical and graphical representations to define and explore the derivative function of a polynomial function with technology, Make connections between the graphs of the derivative function and the function 	A2.2
3	Derivatives of Polynomial Functions (Sample Lesson Included)	• Determine, using limits, the algebraic representation of the derivative of polynomial functions at any point	A2.3
4	Patterns in the Derivative of Sinusoidal Functions (Sample Lesson Included)	• Use patterning and reasoning to investigate connections graphically and numerically between the graphs of $f(x) = sin(x)$, $f(x) = cos(x)$, and their derivatives using technology	A2.4
5	Patterns in the Derivative of Exponential Functions (Sample Lesson Included)	 determine the graph of the derivative of f(x) = a^x using technology Investigate connections between the graph of f(x) = a^x and its derivative using technology 	A2.5
6	Identify "e" (Sample Lesson Included)	• investigate connections between an exponential function whose graph is the same as its derivative using technology and recognize the significance of this result	A2.6
7	Relating $f(x)$ = ln(x) and $f(x) = e^x$ (Sample Lesson Included)	 Make connections between the natural logarithm function and the function f(x) = e^x Make connections between the inverse relation of f(x) = ln(x) and f(x) = e^x 	A2.7
8	Verify derivatives of exponential functions (Sample Lesson Included)	Verify the derivative of the exponential function $f(x)=a^x$ is $f'(x)=a^x \ln a$ for various values of <i>a</i> , using technology	A2.8

Day	Lesson Title	Math Learning Goals	Expectations
9	Jazz Day/ Summative Assessment (Sample Assessment Included)	Summative Assessment	
10, 11	Power Rule (Sample Lesson Included) * New – Jan 08	 Verify the power rule for functions of the form f(x) = xⁿ (where n is a natural number) Verify the power rule applies to functions with rational exponents Verify numerically and graphically, and read and interpret proofs involving limits, of the constant, constant multiple, sums, and difference rules 	A3.1, A3.2 A3.4
12	Solve Problems Involving The Power Rule	• determine the derivatives of polynomial functions algebraically, and use these to solve problems involving rates of change	A3.3
13, 14, 15	Explore and Apply the Product Rule and the Chain Rule	 verify the chain rule and product rule Solve problems involving the Product Rule and Chain Rule and develop algebraic facility where appropriate 	A3.4 A3.5
16, 17	Connections to Rational and Radical Functions (Sample Lesson Included)	 Use the Product Rule and Chain Rule to determine derivatives of rational and radical functions Solve problems involving rates of change for rational and radical functions and develop algebraic facility where appropriate 	A3.4 A3.5
18, 19	Applications of Derivatives	• Pose and solve problems in context involving instantaneous rates of change	A3.5
20	Jazz Day (Sample Lesson Included)		
21	Summative Assessment	Added a day	

Unit 2: Day 1	10: The Power Rule	
Minds On: 10 Action: 50 Consolidate:15	 Learning Goals: Students will Verify the power rule for functions of the form f(x) = xⁿ, (where n is a natural number) Verify that the power rule applies to functions with rational exponents 	Materials graphing calculators BLM 2.10.1 BLM 2.10.2 BLM 2.10.3 BLM 2.10.4
	Asse	essment
Minds On	Oppo Pairs → Activity Students work in pairs to complete BLM2.10.1.	ortunities
Action!	Small Groups→ Guided Exploration Students work in groups of four to complete BLM2.10.2 and BLM2.10.3. Curriculum Expectation/Observation/Mental Note Observe students and assess their understanding of polynomial functions and derivatives. Mathematical Process Focus: Problem Solving; Communicating	
Consolidate Debrief	Whole Class → Debrief Have students explain, in their own words, the relationship between the derivative, $f'(x)$, and a function of the form $f(x) = x^n$, (where n is a natural number). Whole Class → Teacher Led Discussion Using BLM2.10.4 as a guide, demonstrate how the power rule applies to functions with rational exponents.	
	Home Activity or Further Classroom Consolidation Complete BLM2.10.5.	

BLM 2.10.1: Investigating Binomial Expressions

1. a) Complete the next two lines in PASCAL'S TRIANGLE:

b) Explain the pattern that you found in Pascal's Triangle in part a).

2. Use the pattern that you found in Pascal's Triangle to expand each of the following binomial expressions.

 $(x + h)^2 =$

 $(x + h)^3 =$

 $(x+h)^4 =$

 $(x + h)^5 =$

$$(x + h)^6 =$$

3. Find the derivative of each of the following polynomial functions using first principles (using difference quotient)

a) $f(x) = x^2 + 5x + 2$ b) $f(x) = -x^2 - 3x + 1$

BLM 2.10.2: The Power Rule

1. Determine the derivative function of each function algebraically using $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

a)
$$f(x) = x$$
 b) $f(x) = x^2$

c)
$$f(x) = x^3$$
 d) $f(x) = x^4$

2. Explain how the derivative functions, f'(x), of each polynomial function in 1) are related to each of the original polynomial functions, f(x).

3. The derivative for the function, $f(x) = x^n$, (where *n* is a natural number) is f'(x) =____. This is called the Power Rule.

BLM 2.10.3: The Power Rule: A Graphical Approach

1. a) Use a graphing calculator to complete the table of values and sketch the graph of the function $f(x) = x^2$.

b) Find the slope of the secant through the points where $x_1 = x$, and $x_2 = x + h$ on the curve $f(x) = x^2$.

$f(x) = x^2$					
X	У				
X					
x + h					
<i>h</i> ≠ 0					

The slope of the secant between the points where $x_1 = x$, and $x_2 = x + h$ on the curve $f(x) = x^2$

is
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(x+h)^2 - x^2}{x+h-x} = \frac{x^2 + 2hx + h^2 - x^2}{h} = \frac{2hx + h^2}{h} = \frac{h(2x+h)}{h} = \frac{h$$

c) Find the slope of the tangent line to the function at the point P(x, y).

The slope of the tangent line at any point P(*x*, *y*) on the curve $f(x) = x^2$

is
$$m = \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} (2x + h) =$$

BLM 2.10.3: The Power Rule: A Graphical Approach (cont.)

3. a) Use a graphing calculator to complete the table of values and sketch the graph of the function $f(x) = x^3$.

b) Find the slope of the secant through the points where $x_1 = x$, and $x_2 = x + h$ on the curve $f(x) = x^3$.

$f(x) = x^3$					
X	У				
X					
x + h					

The slope of the secant line between the points where $x_1 = x$, and $x_2 = x + h$ on the curve $f(x) = x^3$

is
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(x+h)^3 - x^3}{x+h-x} =$$

c) Find the slope of the tangent line to the function at the point P(x, y).

The slope of the tangent line at any point P(x, y) on the curve $f(x) = x^3$

is
$$m = \lim_{h \to 0} \frac{\Delta y}{\Delta x} =$$

BLM 2.10.3: The Power Rule: A Graphical Approach (cont.)

4. a) Use the results from 1, 2, and 3 to complete the following chart.

Function, $f(x)$	Slope of the tangent line at $P(x, y)$	Derivative, $f'(x)$
f(x) = x		
$f(x) = x^2$		
$f(x) = x^3$		
$f(x) = x^4$		
$f(x) = x^n$		

BLM 2.10.4: Applying the Power Rule

1. Use the power rule to differentiate each of the following functions. [LEAVE YOUR ANSWERS IN UNSIMPLIFIED FORM.]

- a) $f(x) = x^8$ b) $f(x) = x^{12}$
- a) $f(x) = x^{-2}$ b) $f(x) = x^{-5}$
- c) $f(x) = x^{\frac{1}{4}}$ d) $f(x) = x^{-\frac{1}{5}}$
- 2. Express each of the following expressions with fraction exponents.
- a) \sqrt{x} b) $\sqrt[3]{x}$
- c) $(\sqrt[5]{x})^2$ d) $(\sqrt[2]{x})^7$
- 3. Use the power rule to differentiate each of the following functions.
- a) $f(x) = \sqrt{x}$ b) $f(x) = \sqrt[3]{x}$
- c) $f(x) = (\sqrt[5]{x})^2$ d) $f(x) = (\sqrt[2]{x})^7$

BLM 2.10.5: Using the Power Rule

1. Use the power rule to differentiate each of the following functions. [LEAVE YOUR ANSWERS IN UNSIMPLIFIED FORM.]

Function, $f(x)$	Derivative, $f'(x)$
a) $f(x) = x^{10}$	
b) $f(x) = x^{13}$	
c) $f(x) = x^{-8}$	
d) $f(x) = x^{-4}$	
e) $f(x) = x^{\frac{1}{5}}$	
f) $f(x) = x^{\frac{1}{9}}$	
g) $f(x) = x^{-\frac{1}{4}}$	
h) $f(x) = x^{-\frac{1}{3}}$	
i) $f(x) = (\sqrt[5]{x})^3$	
f(x) =	
j) $f(x) = (\sqrt[4]{x})^7$	
f(x) =	

2. Use the power rule and show the steps to determine that the derivative, f'(x), of the function $f(x) = \sqrt{x}$ is $f'(x) = \frac{1}{2\sqrt{x}}$.

Unit 2: Day	11: Differentiation: Operations on Functions	MCV4U
Minds On: 10 Action: 45 Consolidate:20	 Learning Goals: Students will Verify numerically and graphically, and read and interpret proofs involving limits of the constant, constant multiple, sums, and difference rules 	Materials graphing calculators BLM2.11.1 BLM2.11.2 BLM2.11.3 BLM2.11.4 BLM2.11.5
Total=75 min		
	Asso	essment
Minds On	Pairs → Activity Students work in pairs to complete BLM2.11.1. Curriculum Expectations/Observation/Mental Note: Observe students and assess their understanding of polynomial functions.	>
Action!	Small Groups -> Guided Investigation Students will work in small groups to complete BLM2.11.2, BLM2.11.3, and BLM2.11.4 in order to verify numerically and graphically and algebraically using $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ the constant, constant multiple, sum and difference rules.	
Consolidate Debrief	Mathematical Process Focus: Selecting Tools and Computational Strategies Whole Class-> Teacher Led Discussion Have students share their findings and demonstrate the proofs involving limits algebraically using $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ of the constant, constant multiple, sum and difference rules. Students will write a summary of the constant, constant multiple, sum and difference rules in their mathematics journals.	
	Collect student journals and assess their understanding of the curriculum content.	
Practice	Home Activity or Further Classroom Consolidation Complete BLM2.11.5.	

BLM 2.11.1: From Power to Sum

1. Differentiate using the power rule.

a)
$$f(x) = x^4$$
 b) $f(x) = x^{13}$

c)
$$f(x) = x^{-3}$$
 d) $f(x) = x^{\frac{2}{3}}$

2. Simplify.

a)
$$5(2x)$$
 b) $3(5x^4)$

- c) $-4(-3x^{-4})$ d) $-3(-x^{-2})$
- 3. Given the functions: $f(x) = x^3$ and g(x) = 2x
- a) Determine p(x) = f(x) + g(x)b) Determine q(x) = f(x) - g(x)

BLM 2.11.2: The Constant Rule

1. a) Graph the function f(x) = -2 using a graphing calculator. Use **ZOOM 4** to set the parameters for the **WINDOW**.

b) Is the function that you graphed in part a) a horizontal line, or a vertical line?

c) Use the **TRACE** function and the **CALC** function to determine the derivative, $f'(x) = \frac{dy}{dx}$, of the function f(x) = -2 for the *x*-values -3, -2, -1, 0, 1, 2, 3.

The function f(x) = -2 is a ______ line. The slope of this line is m =_____.

X	-3	-2	-1	0	1	2	3
$\frac{dy}{dx}$	=	=	=	=	=	=	=

d) Repeat part a), part b), and part c) for the functions f(x) = -1, f(x) = 0, f(x) = 1, and f(x) = 2.

e) Summarize your findings.

For the function f(x) = c (where *c* is a constant), the derivative is f'(x) =

2. Find the derivatives, f'(x), of each of the following functions algebraically using $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

a) f(x) = -2 b) f(x) = 0 c) f(x) = 2

BLM 2.11.3: The Constant Multiple Rule

PART A

1. a) Graph the function f(x) = -2x using a graphing calculator. Use **ZOOM 4** to set the parameters for the **WINDOW**.

b) Use the **TRACE** function and the **CALC** function to determine the derivative, $f'(x) = \frac{dy}{dx}$, of the function f(x) = -2x for the *x*-values -3,-2, -1, 0, 1, 2, 3. Complete the table

The function f(x) = -2x is a function. The slope of this line is m =

	• ()				•		
X	-3	-2	-1	0	1	2	3
$\frac{dy}{dx}$	= = -2()						

c) Repeat parts a), and b for the functions f(x) = -x, f(x) = x, and f(x) = 2x.

2. Complete the following statement.

For the function f(x) = kx, the derivative is f'(x) = k () =

3. Find the derivatives of each of the following functions algebraically using $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$.

a) f(x) = -2x b) f(x) = x c) f(x) = 2x

BLM 2.11.3: The Constant Multiple Rule (cont.)

PART B

1. a) Graph the function $f(x) = -2x^2$ using a graphing calculator. Use **ZOOM 4** to set the parameters for the **WINDOW**.

b) Is the function that you graphed in part a) a parabola opening upward or a parabola opening downward?

c) Use the **TRACE** function and the **CALC** function to determine the derivative, $f'(x) = \frac{dy}{dx}$, of the function $f(x) = -2x^2$ for the *x*-values -3, -2, -1, 0, 1, 2, 3.

X	-3	-2	-1	0	1	2	3
dy	=	=	=	=	=	=	=
$\frac{1}{dx}$	= -2()	= -2()	= -2()	= -2()	= -2()	= -2()	= -2()
ил	= -2(2())	= -2(2())	= -2(2())	= -2(2())	= -2(2())	= -2(2())	= -2(2())

d) Repeat part a), part b), and part c) for the functions $f(x) = -x^2$, and $f(x) = 2x^2$.

e) Complete the following statement.

The Constant Multiple Rule:

For the function $f(x) = kx^2$, the derivative is f'(x) = k(2()) = k(2())

2. Find the derivatives of each of the following functions algebraically using $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$.

a) $f(x) = -2x^2$ b) $f(x) = x^2$ c) $f(x) = 2x^2$

BLM 2.11.4: The Sum Rule

1. Given the functions: $f(x) = x^2$ and g(x) = 3x

a) Determine the derivatives of f(x) and g(x).

$$f(x) = x^{2}$$
 $g(x) = 3x$
 $f'(x) =$ $g'(x) =$

b) Determine f'(x) + g'(x).

c) Given that h(x) = f(x) + g(x), determine h'(x).

d) Hypothesize a relationship between h'(x) and f'(x) + g'(x).

f) Graph the functions h'(x) and f'(x) + g'(x) from part b) and part c) in the same viewing screen on a graphing calculator to check your hypothesis.

g) Find the derivative h'(x) of the function h(x) in part c) using $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

The Sum Rule

For the function h(x) = f(x) + g(x), the derivative is h'(x) =

BLM 2.11.4: The Difference Rule

- 1. Given the functions: $f(x) = x^2$ and g(x) = 4xa) Determine f'(x) - g'(x).
 - b) Write an expression for the function h(x) = f(x) g(x)
 - c) Determine h'(x).
 - d) Hypothesize a relationship between h'(x) and f'(x) g'(x).
 - e) Graph the functions h'(x) and f'(x) g'(x) on the same viewing screen on a graphing calculator to check your hypothesis.
 - f) Find the derivative h'(x) of the function h(x) in part c) using $\lim_{h \to 0} \frac{f(x+h) f(x)}{h}$

2. Complete the steps in 1) for the functions: $f(x) = 4x^2$ and g(x) = 3x.

Complete the following statement.

The Difference Rule:

For the function h(x) = f(x) - g(x), the derivative is h'(x) =

BLM 2.11.5: Home Activity: Differentiation Practice

1. Use the constant, constant multiple, sum and difference rules to differentiate each of the following functions.

Function, $f(x)$	Derivative, $f'(x)$
a) $f(x) = 4x^2 + 3x$	
b) $f(x) = 8x^5 - 5x^3$	
c) $f(x) = 3x^2 + 7x + 2$	
d) $f(x) = x^3 - 5x^2 - 4x$	
e) f(x) = 9	
f) $f(x) = \frac{2}{3}x^7 + \frac{3}{5}x^3$	
f) $f(x) = 5x^{-3} - 4x^{-2}$	
g) $f(x) = 3x^{\frac{1}{4}} + 2x^{\frac{3}{5}}$	
h) $f(x) = 4x^{-\frac{1}{5}} - 7x^{-\frac{2}{7}}$	
i) $f(x) = \frac{4}{5}x^{-\frac{1}{5}} + \frac{5}{6}x^{-\frac{2}{7}}$	
j) $f(x) = \left(\sqrt[4]{x}\right)^3 + \sqrt{x}$	
f(x) =	
k) $2(-1)^{7} - 3(-1)^{2}$	
$f(x) = \frac{2}{3} (\sqrt[4]{x})' - \frac{3}{5} (\sqrt[3]{x})^2$	
f(x) =	
$f(x) = \left(\sqrt[4]{x}\right)^7$	
f(x) = -f(x) =	

[LEAVE YOUR ANSWERS IN UNSIMPLIFIED FORM.]