You are provided with a sheet of metal that measures 80 cm by 60 cm. If you cut congruent squares from each corner, you are left with a rectangle in the centre and four flaps that can fold up to form the sides of a box. Find the size of the square that you need to cut in order to maximize the volume of the box.

Part 1 – Numerical Investigation

In the first section, you will look at the spreadsheet to investigate the relationship between the cut size and the length and width.

Open a new document and select the Lists & Spreadsheet application. Label columns A, B and C as "cut", "length" and "width" respectively.

Since the full titles cannot be seen, you need to resize the column. From the **Actions** menu, choose

Resize.

Width option.

	1.1	RAD AUTO REAL			ſ			
	A _{cu}	B le	C wi	D	Е	F	G	+^
٠								
1								
2								
3								
4								
5								ΤL

X+Y 1: A	ctions	1: Move Column	
2: lr	isert	2: Resize	
135 3: D	ata	3: Select	
X 4: 5	tatistics	4: GO TO (Ctrl+G)	
1 1		6: Sort	+K)
2			
3			
4			
5			

<mark>&√</mark> 1: Actions 1: Resize Colu	1: Move C	Column
2: Maximize C 3: Minimize Co 4: Resize Row	olumn Width olumn Width • Height	↓ Ctrl+G) late (Ctrl+R)
1	6: Sort	
2		
3		
4		
5		
C width		<u> </u>

Use the ▶ (cursor right) key on the Nav Pad to make the column wider. When you have the size that you need, press . Repeat for each column.

A sub-menu will pop up. Choose the **Resize Column**

ſ	1.1	RAD AUTO REAL			Î	
	A cut	B length	C width	D	E	F 🏫
٠						
1						
2						
3						
4						
5						
-	47			1		×

1.1

A cut

Enter the initial values for the three variables.

ſ	1.1	RAD AUTO REAL				
	A cut	B length	C width	D	E	F 合
٠						
1	0	80	60			
2						
3						
4						
5						
-	42]				

RAD AUTO REAL

C width D

Let the cut size increase by 1 cm. As the size of the square increases by 1 cm, the length and width both decrease by 2 cm. Type the values into the columns as shown.

0 80 60 2 1 78 58 3 2 76 56	
2 1 78 58 3 2 76 56	
3 2 76 56	
4 3 74 54	
5	

B length

In order to find the relationship, you will perform a linear regression on length vs. cut and width vs. cut. From the **Statistics** menu, choose **Stat Calculations**.

	: Actions		D AUT	10 RE/	4L	Î
1,3,5 3	: Data		width	D	E	F 合
<u>x</u> 4	: Statistics	s 1: St	at Calci	ulatior	1S	Þ
留5	: Function	Tab 2: Di	stributio	ons	muele	1
1	0	1. St	onnaena et Test	se mite	ervats	- [
2	1	78	58	<u>></u>	1	
3	2	76	56			
4	3	74	54			
5						
C	width				1	<u> </u>

A sub-menu pops up. Choose **the Linear Regression (mx + b)** option.

1: One-Variable Statistics 2: Two-Variable Statistics	
3: Linear Regression (mx+b) 4: Linear Regression (a+bx) 5: Median-Median Line 6: Quadratic Regression 7: Cubic Regression	tions
8: Quartic Regression 9: Power Regression A:Exponential Regression B:Logarithmic Regression C:Sinusoidal Regression D:Logistic Regression (d=0)	

A dialog box will open. To choose the variable for the X List, press (*). Move to "cut" and press (*) again.

Press (tab) to move to the next field and choose "length" for the Y List.

X Li	st: 'cut	∇
Y Li	st: length	▽
Save RegEqn	to: length	
Frequency Li	st: Width	
Category Li	st:	▽

Note that the third field indicates where the regression equation will be saved. By default, the device selects the first function that is not in use. Press (to complete the calculation.

	X List	: 'cut	▽≙
	Y List	length	$\overline{\nabla}$
Sa∿	e RegEqn to	: f1	\bigtriangledown
Fr	equency List	: 1	\bigtriangledown
(Category List	:	
<u> </u>			

The results are displayed in columns D and E. From the slope and y-intercept fields, you can see that a formula for the length would be l = 80 - 2x.

ſ	1.1	RAD AUTO REAL				Î
	A cut	B length	C width	D	E	F 合
٠					=LinR	
1	0	80	60	Title	Line	
2	1	78	58	Reg	m*x	
3	2	76	56	m	-2.	
4	3	74	54	b	80.	
5				r²	1.	
1	57 ="Li	inear Regre	ssion (mx-	+b)"		

Repeat the regression calculation for the second relationship. Choose "cut" for the X List again and "width" for the Y List.

Note that the regression equation will be saved in $f^{2}(x)$.

X List:	'cut	
Y List:	width	\checkmark
Save RegEqn to:	f2	\bigtriangledown
Frequency List:	1	\bigtriangledown
Category List:		▽
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Looking at the results, you conclude that the width can be expressed as w = 60 - 2x.

	1.1	RAD AUTO REAL			Î	
	B length	C width	D	E	F	G
٠				=LinR		=LinR
1	80	60	Title	Line	Title	Line
2	78	58	Reg	m*x	Reg	m*x
3	76	56	m	-2.	m	-2.
4	74	54	b	80.	b	60.
5			r²	1.	r²	1.
-	31 ="Line	ear Regres	sion (1	nx+b)		

#### Part 2 – The Algebraic Investigation

Now that you have a relationship between the length and cut size and also for width and cut size, you can use calculus to analyze the function and determine the cut size that will produce the maximum volume.

Press (I) followed by (I) to open the **Tools** menu. From the **Insert** menu, choose **Problem**.



Choose the Calculator application.



Define a new function, v(x), as the product of the cut size, the length and the width.

1.1 2.1	RAD AUTO REA	AL 🗎
Define $\nu(x) = x \cdot (x)$	(80-2·x)·(60-2·x)	Done
		1/99

Display the function. Note that the CAS does some "simplification".

1.1 2.1	RAD AUTO REA	ι 🗎
Define $v(x)=x$ .	(80-2·x)·(60-2·x)	Done 🛛
$\nu(x)$	4·x·(x-40	$\overline{).(x-30)}$
1		
		2/99

From the algebra menu, choose Expand.

ft/1: Actions	REAL
i 3: Complex	Done
x= 4: Algebra	1: Solve 2: Eactor
6: Probability 7: Statistics	3: Expand
x 7: Statistics	5: Numerical Solve
19: Functions & Progr	6: Polynomial Tools
	8: Trigonometry
	9: Complex
	B:Finance Solver

Complete the command as shown. The polynomial form of the function will be displayed.

1.1 2.1	RAD AUTO REAL	Î
Define $\nu(x) = x \cdot (8)$	30-2·x)·(60-2·x)	Done 👖
$\overline{\nu(x)}$	$4 \cdot x \cdot (x - 40) \cdot ($	x-30)
expand(v(x))	$4 \cdot x^3 - 280 \cdot x^2 + 4$	800·x
1		
		<u></u> 3/99

Define a new function, v1(x), as the derivative of v(x).

1.1	2.1	RAD AUTO REA	L 🗎
Defin	$e \nu(x) = x \cdot (8)$	:0-2·x)·(60-2·x)	Done 🛛
$\nu(x)$		4·x·(x-40	$\overline{).(x-30)}$
expar	$\operatorname{nd}(\nu(x))$	$4 \cdot x^3 - 280 \cdot x^2$	+4800·x
Defin	$e v I(x) = \frac{d}{dx}$	$\left(\mathbf{v}(\mathbf{x})\right)$	
			<u>⊮</u> 3/99

Display the new function.

1.1 2.1	RAD AUTO REA	4L	Í
Define $v(x)=x \cdot (80-2 \cdot x)$	)•(60–2•x)	Done	
$\nu(x)$	4·x·(x-40	o).(x-30)	
expand(v(x))	$4 \cdot x^3 - 280 \cdot x^2$	²+4800•x	
Define $\nu I(x) = \frac{d}{dx}(\nu(x))$	ĺ	Done	
v1(x)	$12 \cdot x^2 - 560$	)• <b>x+</b> 4800	
R			
		5/5	99

Before solving for the *x*-coordinates of the turning points, define another new function, v2(x), to hold the second derivative.

1.1 2.1	RAD AUTO REAL
ν(x)	4·x·(x-40)·(x-30)
expand(v(x))	$4 \cdot x^3 - 280 \cdot x^2 + 4800 \cdot x$
Define $\nu I(x) = \frac{d}{dx} (\nu(x))$	x)) Done
v1(x)	$12 \cdot x^2 - 560 \cdot x + 4800$
Define $\nu_2(x) = \frac{d^2}{dx^2} \left( \frac{y}{dx^2} \right)$	(x)])
	5/99

Display the new function.

1.1 2.1	RAD AUTO REAL
Define $\nu I(x) = \frac{d}{dx} (\nu(x))$	)) Done 🗖
v1(x)	$12 \cdot x^2 - 560 \cdot x + 4800$
Define $\nu_2(x) = \frac{d^2}{dx^2} \left( \nu_2(x) - \frac{d^2}{dx^2} \right)$	c)) Done
$\nu_2(x)$	24 <b>·</b> x-560
1	
4	/199

To find the *x*-coordinates of the turning points, use the Solve command to find the roots of the first derivative. In order to get decimal solutions, press () followed by ().

1.1	1.1 2.1 RAD AUTO REAL	
Define	$\nu I(x) = \frac{d}{dx} (\nu$	(x)) Done g
v1(x)		$12 \cdot x^2 - 560 \cdot x + 4800$
Define	$\nu_2(x) = \frac{d^2}{dx^2} \Big($	$\nu(x))$ Done
$\nu_2(x)$		24 <b>·</b> x-560
solve(	$\mathbf{r}_{1}(x) = 0, x$	
		7/99

Two solutions are shown which you will test with the second derivative to determine if the value(s) found are appropriate to the context of the problem. On a new line, enter v2(), move up to the solutions and highlight the larger root. Press and the value will be pasted into the entry line.

1.1 2.1	RAD AUTO REAL
v1(x)	12·x ² −560·x+4800
Define $\nu_2(x) = \frac{d}{d}$	$\frac{r^2}{r^2}(v(x))$ Done
$\nu_2(x)$	24 <b>·</b> x-560
$solve(\nu I(x)=0,x)$	x=11.3148  or  x=35.3518
<b>v2</b> ()	1/8

Since the value of the second derivative is positive, you conclude that this value represents the *x*-coordinate of a local minimum. In the context of the problem, you can also exclude this root since it produces a width that is negative.



Substitute the smaller root into the second derivative in the same way.

1.1 2.1	RAD AUTO REAL
	12 x 300 x 14000 🔼
Define $\nu_2(x) = \frac{d^2}{dx^2}$	(v(x)) Done
$\nu_2(x)$	24 <b>·</b> x-560
$solve(\nu I(x)=0,x)$	x=11.3148 or x=35.3518
<i>v2</i> (35.3518)	288.443
<b>v2</b> ()	<b>₩</b>
2. 2.	2/9

Since the value of the second derivative is negative, you conclude that the root represents the *x*-coordinate of a local maximum. Therefore, a cut size of 11.3 cm produces the maximum volume.

1.1 2.1	RAD AUTO REAL	
Define $\nu_2(x) = \frac{d^2}{dx^2}$	$(\nu(x))$	
$\nu_2(x)$	24 <b>·</b> x-560	
$solve(\nu I(x)=0,x)$	x=11.3148 or x=35.3518	
<i>v2</i> (35.3518)	288.443	
v2(11.3148)	-288.445	
	10/9	

If you substitute this value into the function, you get a value that represents the maximum volume.

1.1 2.1	RAD AUTO REAL
dx ²	
$\nu_2(x)$	24 <b>·</b> x-560
$solve(\nu I(x)=0,x)$	x=11.3148 or x=35.3518
<i>v2</i> (35.3518)	288.443
<i>v2</i> (11.3148)	-288.445
v(11.3148)	24258.4
	11/99

If you substitute this value into the expressions for length and width, you will get the other dimensions of the box of maximum volume.

1.1 2.1	RAD AUTO REAL
$\frac{\nu 2(\mathbf{x})}{2}$	24·x-560 🗖
$solve(\nu I(x)=0,x)$	x=11.3148 or x=35.3518
v2(35.3518)	288.443
<i>v2</i> (11.3148)	-288.445
v(11.3148)	24258.4
80-2.11.3148	57.3704
T	
	12/99

So, a cut size of 11.3 cm produces a box with a length of about 57.4 cm and a width of about 37.4 cm.

1.1 2.1	RAD AUTO REAL
solve(v/(x)=0,x)	x=11.3148 or x=35.3518
<i>v2</i> (35.3518)	288.443
<i>v2</i> (11.3148)	-288.445
v(11.3148)	24258.4
80-2.11.3148	57.3704
60-2.11.3148	37.3704
	1200
	13/95