

OAME/OMCA GRADE 12 PROJECT MCV 4U

SUMMER, 2007

Course Lead: Kevin Maguire, Toronto DSB

Writers	Board
Malcolm Gault	Upper Grand DSB
Paula Thiessen	DSB Niagara
Angelo Lillo	DSB Niagara
Scott Taylor	Ottawa Carlton DSB
Valerie Pandelieva	Ottawa Carlton DSB
Mary Card	Toronto DSB
Priscilla Bengo	Toronto DSB
Karen Fischer	Wellington CDSB

Reviewers

Name	Board
Dwight Stead	Dufferin-Peel CDSB
Paula Thiessen	DSB Niagara
Rob Gleeson	Bluewater DSB
Dr. Peter Taylor	Queens University

Project Leads

Name	Board
Irene McEvoy	Peel DSB
Shelley Yearley	Trillium Lakelands DSB

Project Manager

Name	Board
Sue Hessey	OAME

Steering Committee

Name	Board/Association
Mike Davis	<u>OMCA</u>
Joyce Tonner	<u>OMCA</u>
Cheryl McQueen	<u>OMCA</u>
Jacqueline Hill	<u>OAME</u>
Dan Charbonneau	<u>OAME</u>
Myrna Ingalls	Ministry of Education
Shirley Dalrymple	Ministry of Education
Ross Isenegger	Ministry of Education

Funding provided by the Ministry of Education.

Grade 12 University Calculus and Vectors (MCV 4U)

Introduction

This package of materials has been created in response to the revised grade 12 mathematics curriculum to be implemented in September, 2007. The prepared lessons are not exhaustive, but rather were developed to give a flavour of the intended approach for this course. Attention was given to areas where there was a lack of resources, as well as to modelling how to bridge the understanding for students between the abstract and application. Teachers are encouraged to work together in school and board teams to develop lessons not included to extend their own learning as the writers in this project have done.

The following supports are included in this package.

- Course Overview based on the Ministry of Education version (order and timing of topics and summative assessments)
- Lessons and BLMs for 18 classes (identified as those which would most support teachers and complement the lessons developed under TIPS4RM)
- Unit summative performance tasks (available in the members area of OAME.on.ca and omca.ca
- Electronic Resources (GSP sketches, Fathom Data files, power point slide shows)

These resources are also posted on the OAME website: http://www.oame.on.ca:

Guiding Principles:

Writers and reviewers completed this resource package in order to:

- improve student success (model teaching considerations which support the profile of the learner)
- interweave and revisit the big idea of the course conceptual understanding of derivatives, the use of vectors to introduce students to 3-D reasoning, the increase in time for development and consolidation of understanding
- emphasize problem solving and inquiry
- > make the mathematical processes and literacy strategies explicit
- continue the use of TIPS4RM

Lesson Planning (Match Template)

The lessons and assessments have been created using the MATCH template from the TIPS4RM resource. The acronym MATCH is organized around a three part lesson, paying attention to:

Minds on
Action!getting students mentally engaged in the first few minutes of classAction!the main portion of the lesson where students investigate new conceptsConsolidate/Debriefideas for 'pulling out the math', and checking for understanding

Meaningful and appropriate follow-up to the lesson is provided in the Home Activity section.

The time allocation in the upper left corner suggests how much time should be devoted to each of the three parts of the lesson.

The materials section in the upper right corner identifies resources needed for the class.

The right hand column offers Tips for teachers such as instructional strategies, references to resources, literacy strategies used, and explanations.

The narrow column to the left of this suggests opportunities for assessment.

For further details about this organizer go to http://www.curriculum.org/lms/

Field Code Changed

Teaching Considerations

There are many considerations in the development of a positive learning environment which supports the grade 12 learner.

Processes

The seven mathematical processes can be referred to as the '*actions of math.*' In the revised curriculum, these process expectations have been highlighted in their importance since they support the acquisition and use of mathematical knowledge and skills. They can be mapped to three categories of the Achievement Chart – Thinking, Communication and Application. The fourth category, Knowledge and Understanding, connects to the overall and specific expectations of the course, which can be referred to as the '*mathematical concepts'*. Students apply the mathematical processes as they learn the content for the program.

The **combination** of the mathematical **processes** and **expectations** are **embedded** in the **achievement chart** as the following:

Knowledge and Understanding			
Concept U	nderstanding	Procedural Fluency	
	Thinking		
Problem Solving	Reflecting	Reasoning and Provi	ng
	Applicatio	n	
Selecting Tools and	Computational Str	ategies Connecti	ing
	Communicat	tion	

Communicating Representing

Students need multiple opportunities to engage in the processes. Many lessons included in this project highlight at least one process to be developed.developed.

To assist students' development of these processes (instructional strategies, questions and feedback) see TIPS4RM Processes Package on the Leading Math Success website http://www.curriculum.org/lms/

Literacy Strategies

Mathematics is the most difficult content area material to read because there are more concepts per word, per sentence, and per paragraph than in any other subject; the mixture of words, numerals, letters, symbols, and graphics requires the reader to shift from one type of vocabulary to another.

Leading Math Success, Report of the Expert Panel for Mathematical Literacy Gr. 7 – 12

Improved student achievement demands an emphasis on developing literacy competencies linked to mathematics learning. To consolidate understanding, learners need opportunities to share their understanding both in oral as well as written form. Weakness in reading or writing skills provides barriers to success in problem solving. Many lessons utilize literacy strategies.

Starting points for teachers:

- > Use strategies to develop vocabulary and comprehension skills, including
 - o word walls
 - o Frayer model
 - o concept circles
- > Use strategies relating to the organization of information
 - "inking your thinking" having students write down their thoughts
 - concept maps
 - o anticipation guides
- > Use strategies to help students understand features of textbooks and graphics
 - o read problems aloud
 - highlight key words
 - o think aloud

More details and strategies can be found in Think Literacy: Cross-Curricular Approaches, Mathematics, Grades 10-12, 2005, http://www.curriculum.org/thinkliteracy/library.html

Assessment

The primary purpose of assessment and evaluation is to improve student learning. Information gathered through assessment helps to provide feedback to students as well as guiding teachers' instruction.

Assessment must be based on the four categories of the achievement chart and include the mathematical processes.

Assessment should be varied in nature. The chart below provides suggestions for a variety of assessment tools and the categories that they could be connected to.

Category	Assessment Tools	Formatted Table
Knowledge and Understanding	Quiz, Test, Exam, Checkbric, Demonstration, Short Answer , True/False , Multiple Choice, Observation	
Thinking	Editorials, Observations, Portfolio/Digital Portfolio, Essays, Articles, Debates, Report, Investigations, Graphic Organizers, Open-ended Questions, Performance Assessment Tasks, Video Tapes, Plays, Student /Teacher Conferences	
Communication	Concept Map, Journals, Plays , Multi media presentations , Oral presentations , Drawings , Discussions, Explanations , Performance Task Assessment, Student/Teacher Conferences, Portfolio	
Application	Concept Map, Debates, Editorials, Portfolio, Observation, Tests, Quizzes, Open-ended Questions, Design of Products, Models/Concrete Representations, Discussion	

Note-: This is by no means an exclusive or exhaustive list. It is only a guide.

Manipulatives and Technology

Many expectations in the revised curriculum make reference to using a variety of tools, including manipulatives, calculators and computer software. All new learning should begin with exploration and using learning tools whenever possible to provide students with representations of abstract mathematical ideas in varied, concrete, tactile, and visually rich ways.

Information and communication technologies provide a range of tools that can significantly extend and enrich teachers' instructional strategies and support students' learning. Technology can reduce the time spent on routine mathematical tasks thus allowing students to devote more of their efforts to thinking and concept development.

The Ontario Curriculum, Grade 12 Mathematics, Revised, 2007

The lessons and assessment written for this support document identify these learning tools. Teachers need to make arrangements to have these materials available and for computer lab booking at the beginning of the course. The use of these learning tools

		Calculus and Vectors: MCV4U - Introduction (Draft)	Page 7 of 20
--	--	--	--------------

should not be considered an extra to the instructional component of the course, nor should they be considered as only beneficial to a select few.

Online Resources

Ontario Resources

TIPS4RM, Leading Math	http://www.edu.gov.on.ca/eng/studentsuccess/
Success and TIPS	
resources	
Think Literacy	www.oame.on.ca/main/index1.php?lang=en&code=ThinkLi
Mathematics Grades 7 –	t
10	
Ontario Association for	www.oame.on.ca
Mathematics Education	
Statistics Canada	http://estat.statcan.ca/
Ontario Mathematics	www.omca.ca
Coordinators Association	

Learning Resources

Learning Math Series	www.learner.org
Math Forum	www.mathforum.org
NCTM	www.nctm.org
Regina University - Rich Math Tasks	http://mathcentral.uregina.ca
Rich Math Tasks - UK	www.nrich.maths.org.uk/

Virtual Manipulatives

National Library of Virtual	http://nlvm.usu.edu/en/nav/vlibrary.html
Manipulatives	

<u>Day</u>	Lesson Title	Math Learning Goals	Expectations	
<u>1</u>	Rates of Change	• Describe real-world applications of rate of change		-
	<u>Revisited</u>	(e.g., flow) problems using verbal and graphical		
	<u>(TIPS4RM Lesson)</u>	representations (e.g., business, heating, cooling,		Formatted: Font: Arial
		motion, currents, water pressure, population,	A1.1, A1.2	
		environment, transportations)		
		• Describe connections between average rate of		
		of change and slope of tangent in context		
2	Determine	• With or without technology, determine		_
4	Instantaneous Rate of	approximations of and make connections between		
	Change using	instantaneous rates of change as secant lines tends	A1 3	
	Technology	to the tangent line in context	<u></u>	
	(TIPS4RM Lesson)	<u> </u>		Formatted: Font: Arial
3	Exploring the	• Explore the concept of a limit by investigating		7
	Concept of a Limit	numerical and graphical examples and explain the		
	(TIPS4RM Lesson)	reasoning involved		Formatted: Font: Arial
		• Explore the ratio of successive terms of sequences		
		and series (use both divergent and convergent	<u>A1.4</u>	
		examples)		
		(e.g., Explore the nature of a function that		
		approaches an asymptote (horizontal and vertical)		
4.5	Calculating an	• Connect average rate of change to		-
	instantaneous rate of	f(a+h) - f(a)		
	change using a	$\frac{1}{h}$ and instantaneous rate of change	115 116	
	numerical approach	$\frac{n}{2}$	<u>A1.5, A1.6</u>	
	<u>(TIPS4RM Lesson)</u>	to - to - f(a)		Formatted: Font: Arial
		$h \to 0$ h		
6,7	Jazz / Summative			
	<u>Assessment</u>			
ote:	TIPS4RM Lesson refer	s to a lesson developed by writing teams funded by the	<u>Ministry of</u>	Formatted: Font: Bold, Not Italic, Font c
	Const Theory Language and a	of included with this peakers. They will be evailable of	t a latar data	AUTO

Calculus and Vectors

Unit 1 Rates of Change

Unit 2 Exploring Derivatives

Calculus and Vectors

Lesson Outline

<u>Day</u>	Lesson Title	Math Learning Goals	Expectations
1	<u>Key</u> <u>characteristics of</u> <u>instantaneous</u> <u>rates of change</u> (<u>TIPS4RM</u> <u>Lesson)</u>	 Determine intervals in order to identify increasing, decreasing, and zero rates of change using graphical and numerical representations of polynomial functions Describe the behaviour of the instantaneous rate of change at and between local maxima and minima 	<u>A2.1</u>
2	Patterns in the Derivative of Polynomial Functions (TIPS4RM Lesson)	 Use numerical and graphical representations to define and explore the derivative function of a polynomial function with technology, Make connections between the graphs of the derivative function and the function 	<u>A2.2</u>
<u>3</u>	<u>Derivatives of</u> <u>Polynomial</u> <u>Functions</u> (Sample Lesson <u>Included)</u>	Determine, using limits, the algebraic representation of the derivative of polynomial functions at any point	<u>A2.3</u>
<u>4</u>	Patterns in the Derivative of Sinusoidal Functions (Sample Lesson Included)	• Use patterning and reasoning to investigate connections graphically and numerically between the graphs of $f(x) = sin(x)$, $f(x) = cos(x)$, and their derivatives using technology	<u>A2.4</u>
<u>5</u>	Patterns in the Derivative of Exponential Functions (Sample Lesson Included)	 Determine the graph of the derivative of f(x) = <u>a^x using technology</u> Investigate connections between the graph of <u>f(x) = a^x and its derivative using technology</u> 	<u>A2.5</u>
<u>6</u>	<u>Identify "e"</u> (<u>Sample Lesson</u> Included)	Investigate connections between an exponential function whose graph is the same as its derivative using technology and recognize the significance of this result	<u>A2.6</u>
<u>7</u>	$\frac{\text{Relating } f(x) =}{\ln(x) \text{ and }}$ $\frac{f(x) = e^{x}}{(\text{Sample Lesson } 1)}$ $\frac{\ln(x) + \ln(x) + \ln(x)}{\ln(x) + \ln(x)}$	 Make connections between the natural logarithm function and the function f(x) = e^x Make connections between the inverse relation of f(x) = ln(x) and f(x) = e^x 	<u>A2.7</u>

Calculus and Vectors: MCV4U - Introduction (Draft)

Page 10 of 20

<u>Day</u>	Lesson Title	Math Learning Goals	Expectations
<u>8</u>	Verify derivatives of exponential functions (Sample Lesson Included)	 Verify the derivative of the exponential function <u>f(x)=a^x is f'(x)=a^x ln a for various values of a,</u> <u>using technology</u> 	<u>A2.8</u>
<u>9</u>	Jazz Day / Summative Assessment (Sample Assessment Included)		
<u>10.</u> <u>11</u>	Power Rule	 Verify the power rule for functions of the form f(x) = xⁿ (where n is a natural number) Verify the power rule applies to functions with rational exponents Verify numerically and graphically, and read and interpret proofs involving limits, of the constant, constant multiple, sums, and difference rules 	<u>A3.1, A3.2</u> <u>A3.4</u>
<u>12</u>	<u>Solve Problems</u> Involving The Power Rule	Determine the derivatives of polynomial functions algebraically, and use these to solve problems involving rates of change	<u>A3.3</u>
<u>13,</u> <u>14,</u> <u>15</u>	Explore and Apply the Product Rule and the Chain Rule	Verify the chain rule and product rule Solve problems involving the Product Rule and Chain Rule and develop algebraic facility where appropriate	<u>A3.4 A3.5</u>
<u>16,</u> <u>17</u>	Connections to Rational and Radical Functions (Sample Lessons Included)	Use the Product Rule and Chain Rule to determine derivatives of rational and radical functions Solve problems involving rates of change for rational and radical functions and develop algebraic facility where appropriate	<u>A3.4</u> <u>A3.5</u>
<u>18,</u> <u>19</u>	Applications of Derivatives	Pose and solve problems in context involving instantaneous rates of change	<u>A3.5</u>
<u>20</u>	Jazz Day Summative		
<u>21</u>	Assessment		
Note: Educat Details	TIPS4RM Lesson re tion. These lessons ar s will be posted on the	fers to a lesson developed by writing teams funded by the e not included with this package. They will be available a OAME web site. (www.oame.on.ca)	Ministry of t a later date.

<u>Unit</u>	Unit 3 Calculus and Vectors					
<u>Apply</u>	Applying Properties of Derivatives					
Day	Lesson Title	Math Learning Goals	Expectations			
<u>1.</u> <u>2.</u> <u>3.</u>	<u>The Second</u> <u>Derivative</u> (<u>Sample Lessons</u> <u>Included</u>)	 Define the second derivative Investigate using technology to connect the key properties of the second derivative to the first derivative and the original polynomial or rational function (increasing and decreasing intervals, local maximum and minimum, concavity and point of inflection) Determine algebraically the equation of the second derivative <i>f</i>"(<i>x</i>) of a polynomial or simple rational function <i>f</i>(<i>x</i>), and make connections, through investigation using technology, between the key features of the graph of the function and those of the first and second derivatives 	<u>B1.1, B1.2, B1.3</u>			
<u>4</u>	Curve Sketching from information	• Describe key features of a polynomial function and sketch two or more possible graphs of a polynomial function given information from first and second derivatives – explain why multiple graphs are possible.	<u>B1.4</u>			
<u>5,</u> <u>6</u>	Curve Sketching from an Equation	 Extract information about a polynomial function from its equation, and from the first and second derivative to determine the key features of its graph Organize the information about the key features to sketch the graph and use technology to verify. 	<u>B1.5</u>			
<u>7</u>	Jazz Day					
<u>8</u>	<u>Unit Summative</u> (Sample <u>Assessment</u> Included)					

Note: The assessment on day 8, and an assessment for a jazz day, is available from the member area of the OAME website and from the OMCA website (www.omca.ca).

Unit 4 Rate of Change Problems

Calculus and Vectors

Lesson Outline:

Day	Lesson Title	Math Goals	Expectations
$\frac{\underline{1,}}{\underline{2,}}$	Rate of Change Problems (Sample Lessons	Make connections between the concept of motion and the concept of the derivative in a variety of ways.	<u>B2.1</u>
	<u>Included)</u>	 Make connections between graphical and algebraic representations and real-world applications Solve problems in wide variety of contexts and interpret the results 	<u>B2.2, B2.3</u>
<u>4.</u> <u>5.</u> <u>6.</u> <u>7.</u> <u>8</u>	<u>Optimization</u> <u>Problems</u>	 Solve a variety of optimization problems given an algebraic model Solve a variety of optimization problems requiring the creation of an algebraic model 	<u>B2.4</u>
<u>9</u>	Solve problems from data	 Solve problems arising from real-world applications by applying a mathematical model and the concepts and procedures associated with the derivative to determine mathematical results, and interpret and communicate results. Revisit some of the rate of change and rate of flow problems from Unit 1 	<u>B2.5</u>
<u>10</u>	Jazz Day		
<u>11,</u> <u>12,</u> <u>13</u>	Summative Assessment for Units 3 – 4 (Sample Assessment Included)		

Note: The assessment on day 11 is available from the member area of the OAME website and from the OMCA website (www.omca.ca).

	Uni	it 5	Calculus	and Vectors	5	
	Rep	presenting Vector	ors_			
	Les	<u>son Outline</u>				
E		ICTURE				
<u>S</u>	tuden	ts will:				
		Introduce vect Depresent vect	tors in two-space and three-space		-	Formatted: Bullets and Numbering
		Determine vec	ctor operations and properties			
		Solve problem	is involving vectors including those arising from real-world applic	ations		
	Day	Lesson Title	Math Learning Goals	Expectatio	ns	
	<u>1</u>	What's the	Explore connections between calculus and vectors			
		Connection?				
	<u>2</u>	What's your Vector	Represent vectors geometrically and algebraically in two-	<u>C1.1, 1.2</u>	•	Formatted: Bullets and Numbering
		(Sample Lesson	space. Develop on understanding of equivalent vestors			
		Included)	 Develop an understanding of equivalent vectors Use geometric vectors to interpret information arising from 			
			real- world applications			
			(Use applets described in Appendix A)			
	<u>3</u>	Back and Forth with Vectors	Determine methods for changing from geometric (directed line segment) to algebraic (Cartesian) forms of a vector in	<u>C1.3</u>	-	Formatted: Bullets and Numbering
		with vectors	two-space and vice versa.			
	4	Operating with	• Add subtract and multiply vectors by a scalar in two-	C2 1 2 3		Formatted: Bullets and Numbering
	-	<u>Vectors</u>	space, both geometrically and algebraically	<u></u>		
			Solve problems including problems arising from real-world			
			applications involving vector operations in two-space			
	<u>5</u>	The Dot Product	Determine the dot product of vectors in two-space	<u>C2.4</u>		Formatted: Bullets and Numbering
			geometrically and algebraically Describe applications in two space of the dot product			
			including projections			
	<u>6</u>	<u>Jazz Day</u>	(Use applets described in Appendix A)			
Π	<u>7</u>	<u>Summative</u>				
	0	<u>Assessment</u>	The second state of the second state of the leaders	C1 4 2 1 2 2		
	<u>o</u>	Let s Go SD	Represent both points and vectors algebraically in three- space	<u>C1.4, 2.1, 2.5</u>		Formatted: Bullets and Numbering
			Determine the distance between points and the magnitude			
			of vectors in three-space both geometrically and			
			algebraically Solve problems including problems arising from real world			
			applications involving vector operations in three-space			
				ı	1	

	<u>9</u>	<u>The Laws of</u> <u>Vectors</u>	Investigate, with and without technology, the commutative, associative and distributive properties of the operations of addition, subtraction and multiplication by a scalar in two and three-space (Use Vector Laws applet described in Appendix A)	<u>C2.2</u>	•	Formatted: Bullets and Numbering
	<u>10</u>	<u>3D Dot Product</u>	 Determine the dot product of vectors in three-space geometrically and algebraically Describe applications in three-space of the dot-product including projections 	<u>C2.4</u>	-	Formatted: Bullets and Numbering
	<u>11</u>	<u>More on Dot</u> <u>Product</u>	Determine through investigation the properties of dot product in two and three space	<u>C2.5</u>	-	Formatted: Bullets and Numbering
	<u>12</u>	The Cross Product	Determine the cross product of vectors in three-space algebraically including magnitude and describe applications	<u>C2.6</u>	*	Formatted: Bullets and Numbering
	<u>13</u>	<u>More on Cross</u> <u>Product</u>	Through investigation, determine properties of the cross product of vectors	<u>C2.7</u>	-	Formatted: Bullets and Numbering
	<u>14</u>	<u>Putting it All</u> <u>Together</u>	Solve problems arising from real-world applications that involve the use of dot products, cross products, including projections	<u>C2.8</u>	•	Formatted: Bullets and Numbering
	<u>15</u>	<u>Jazz Day</u>				
	<u>16</u>	Unit Summative				
Ц		Assessment				

Unit 6 Calculus and Vectors Representing Lines and Planes						
Ŀ	esson Outline					
BIG	PICTURE					
tuc	lents will:					
	Paprosent lines and pla	nee in a variaty of forms and solve problems involving distances	and interes	ations	Formattad. Dullate and Numbering	
	Determine different geo	metric configurations of lines and planes in three-space			Formatted: Bullets and Numbering	
	Investigate intersection	s of and distances between lines and/or planes				
Da	y Lesson Title	Math Learning Goals	Expec	tations		
1	Lines in Two-	• Recognize that a linear equation in two-space forms a line	C3.1	<u>ــــ</u>	Formatted: Bullets and Numbering	
	<u>Space</u>	and represent it geometrically and algebraically	<u>C4.1</u>			
		• Represent a line in two-space in a variety of forms (scalar,				
		vector, parametric) and make connections between the				
2	Lines in Three	Torms	C4.2			
4	<u>Lines in Three-</u> Space	• Recognize that a life in three-space cannot be represented in scalar form	<u>C4.2</u>		Formatted: Bullets and Numbering	
	<u>space</u>	Represent a line in two-space in a variety of forms (vector				
		and parametric) and make connections between the forms				
3	Planes in Three-	Recognize that a linear equation in three-space forms a	C3.2		Formatted: Bullets and Numbering	
	<u>Space</u>	plane and represent it geometrically and algebraically	<u>C4.3</u>			
		• Determine through investigation geometric properties of	<u>C4.5</u>			
		planes including a normal to a plane				
		• Determine using the properties of the plane the scalar,				
4	Lines and Dimes	vector and parametric equations of a plane	C1.6			
4	<u>Lines and Planes</u> in Three Space	Determine the equation of a plane in its scalar, vector or	$\frac{C4.0}{C4.2}$		Formatted: Bullets and Numbering	
	<u>in Intee-Space</u>	 Represent a line in three-space by using the scalar equations 	<u>C4.2</u>			
		of two intersecting planes	1			
I I	D. C C Il C		5 (1)	1.10		
	Refer to Smart Ideas fi	le Overview.ipr for a flowchart of the concepts covered in lesson	is 5 throug	<u>(h 10.</u>		
5	Lots of Lines	• Recognize that a linear equation in two-space forms a line	C3.1	-	Formatted: Bullets and Numbering	
_	(TIPS4RM	represent it geometrically and algebraically	C4.1			
	Lesson)	Recognize that the solution to a system of two linear				
		equations in two-space determines a point in two space if				
		the lines are not coincident or parallel				
		• Solve and classify solutions to systems of equations in two-				
		space in vector and parametric forms and understand the				
1		connections between the graphical and algebraic				

<u>6</u>	Concrete Critters (TIPS4RM Lesson)	 Determine through investigation different geometric configurations of combinations of up to three lines and/or planes in three space Classify sets of lines and planes in three space that result in a common point, common line, common plane or no intersection 	<u>C3.3</u> ←	Formatted: Bullets and Numbering
<u>7</u>	<u>Interesting</u> <u>Intersections I</u> (TIPS4RM <u>Lesson)</u>	Determine the intersections of two lines, and a line and a plane in three space given equations in various forms and understand the connections between the geometric and algebraic representations	<u>C3.3</u> ←-	Formatted: Bullets and Numbering
<u>8</u>	Interesting Intersections II (TIPS4RM Lesson)	• Determine the intersections in three-space of 2 planes and 3 planes intersecting in a unique point given equations in various forms and understand the connections between the graphical and algebraic representations of the intersection	$\begin{array}{ccc} \underline{C3.3} & \leftarrow \\ \underline{C4.3} & \underline{C4.4} \\ \underline{C4.7} & \end{array}$	Formatted: Bullets and Numbering
2	Interesting Intersections III (TIPS4RM Lesson)	 Determine the intersections of 3 planes in three space given equations in various forms and understand the connections between the graphical and algebraic representation of the intersection Recognize that if a • b × c ≠ 0 is true then the three planes intersect at a point Solve problems involving the intersection of lines and planes in three-space represented in a variety of ways 	<u>C4.4</u> ← <u>C4.7</u>	Formatted: Bullets and Numbering
10	<u>How Far Can it</u> <u>Be?</u> (TIPS4RM <u>Lesson</u>)	 Calculate the distance in three-space between lines and planes with no intersection Solve problems related to lines and planes in three-space that are represented in a variety of ways involving intersections 	$\underbrace{\begin{array}{c} \underline{C3.3} \\ \underline{C4.3} \\ \underline{C4.7} \end{array}}_{\underline{C4.7}} \leftarrow$	Formatted: Bullets and Numbering
11	Jazz Day			
<u>12,</u> <u>13,</u> <u>14</u>	<u>Summative</u> <u>Assessment for</u> <u>Units 5 and 6</u>			

Note: *TIPS4RM Lesson* refers to a lesson developed by writing teams funded by the Ministry of Education. These lessons are not included with this package. They will be available at a later date. Details will be posted on the OAME web site. (www.oame.on.ca)

Formatted: Left

Appendix A: Electronic Learning Objects to Support MCV4U

Texas Instruments Nspire Activities

The Activities Exchange web site features three activities that could be used to enhance some of the lessons in units 1, 2 and 4. These activities are described below. The activities may be downloaded from http://education.ti.com/educationportal/activityexchange/activity_list.do?cid=us

Activity	ID	Associated Lesson	Handheld
The Tangent Line Problem	<u>8315</u>	Unit 1 Lesson 2	Nspire or Nspire CAS
Derivative Trace	<u>8110</u>	Unit 2 Lesson 2	Nspire or Nspire CAS
Falling Ladder	<u>8318</u>	Unit 4 Lesson 9	Nspire CAS

E-Learning Ontario Web Site: MGA4U Unit 3 Vectors http://www.elearningontario.ca/eng/Default.aspx

Activity 2: Vector Laws

The last applet on Vector Laws allows the user to investigate the commutative, associative, distributive properties of 2–space vectors in geometric form. At the bottom of activity 2 is a link to the University of Guelph's Physics department where a tutorial for vectors is provided.

Activity 3: Applications of Geometric Vectors

The second applet in the Velocity Java Applets allows the user to investigate the resultant vector for a boat crossing a river. The user controls 2-space vectors in geometric form for the boat's velocity and the current.

Activity 5: Algebraic Vectors

The first applet allows users to interactively explore the connections between geometric and algebraic forms of vectors in 2-space.

At the end of this activity is a link to a 3-space Graphing Tool that allows students to graph points, lines and planes in various forms.

Activity 6: Operations with Algebraic Vectors

There are four applets on addition of vectors, scalar multiplication, unit vectors and position vectors. They allow the user to interactively manipulate 2-space vectors.

E-Learning Ontario Web Site: MGA4U Unit 5 Vector Methods with Planes and Lines

Activity 1: Equations of Lines in 2-space

There are five guided and three interactive applets on forms of vector equations, how to convert between forms, distance from a point to a line.

Activity 3: Intersection of Lines

There are two guided applets on intersection of lines in 2-space and 3-space.

Activity 5: Equations of Planes

There are four guided applets on the forms of equations of planes and how to convert between forms.

Activity 6: Intersection of a Line and a Plane

There is one guided applet.

Activity 7: Intersection of Planes

There is one guided applet on solving systems of planes algebraically.

Activity 8: Task: X, Y & Z Factor

An open ended task using the 3-space Graphing Tool allows students to consolidate vector concepts.

Vector Applets on the Web

NCTM

http://standards.nctm.org/document/eexamples/chap7/7.1/index.htm

This site has two applets. The first illustrates the components of a vector to control a car. The user interactively controls the speed and direction. The second illustrates vector addition for an aircraft flying that is acted upon by wind. The user controls the speed and direction of both the aircraft and wind.

Syracuse University

http://physics.syr.edu/courses/java-suite/crosspro.html

This applet demonstrates cross product of two vectors in 3-space. It allows users to interactively change the vectors and see the resulting cross-product. The two vectors are limited to one plane but the plane can be moved to different viewing angles.

International Education Software http://www.ies.co.jp/math/products/vector/menu.html

This Japanese site has a collection of applets that cover a wide variety of 2-space and 3-space vector topics. The controls are not very user-friendly but there are topics covered here like vector forms of lines in 2-space and 3-space that are not covered on other sites.

Professor Bob's Physics Lab (Rob Scott)

http://www.after4.ca/SchoolStuff/PhysicsLab/roomnojpgtest.html

This interactive site has flash applets on various Physics topics. Some topics such as Milliken and Momentum labs allow students to apply vector concepts.

<u>B.Surendranath Reddy (Physics Teacher in India)</u> <u>http://surendranath.org/Applets.html</u>

This site has several applets that can be used in MCV4U. For vectors there are applets for addition, cross product of vectors, converting between Cartesian and directed line segment forms and several kinematics applets. For calculus there are applets for instantaneous speed and velocity.